【C++】详解STL的容器之一:list

目录

简介

初识list

模型

list容器的优缺点

list的迭代器

常用接口介绍

获取迭代器

begin

end

empty

size

front

back

insert

push_front

pop_front

push_back

pop_back

clear

源代码思路

节点设计

迭代器的设计

list的设计

 begin()

end()

空构造

insert()

push_back

模拟实现

节点设计

迭代器设计

list设计

框架

获取迭代器

空构造

insert

erase

赋值重载

其他接口


简介

C++的STL有六大组件:仿函数空间配置器算法容器迭代器配接器。list属于容器的一种。

list的设计使用了模板,是一种泛型编程。


初识list

模型

list是带哨兵位的双向循环链表

链表是由一个一个的节点通过指针链接起来的。list的节点设计:prev指针指向前一个节点,next指针指向下一个节点,data储存数据。如下图

而list想要实现双向循环链表,只需用一个指针指向不储存数据的节点——哨兵位节点或头节点。让哨兵位节点将整条链表首尾相连。哨兵位的next是链表的头节点,哨兵位的prev是链表的尾节点,如下图

list容器的优缺点

优点:头部插入,头部删除,尾部插入,尾部删除的时间复杂度位O(1)。list的指针是一直指向哨兵位节点的,通过哨兵位节点能找到链表的头节点和尾节点,从而实现头插,头删,尾插,尾删操作。

缺点:对链表中的数据进行排序的时间复杂度会很高。找链表中的某一个数据时,需要遍历链表。

list的迭代器

list的每个节点在内存中储存不是连续的

普通的指针不能完成对链表的遍历——加加指针不能使指针指向下一个节点,减减指针不能使指针指向上一个节点。指针的解引用不能完成对数据存取——普通指针解引用是整个节点,而不是节点里存的数据。

所以不能用普通指针做list的迭代器。应该对普通指针进行封装将封装之后的普通指针作为list的迭代器。该迭代器能完成链表的遍历,数据的存取等操作。

具体怎样封装,下面介绍源代码思路和模拟实现时会详细讲解

迭代器失效:把迭代器指向的节点删除掉,会让该迭代器失效,类似于野指针的问题。在迭代器指向节点的前面或后面插入节点,不会使迭代器失效。


常用接口介绍

获取迭代器

begin

返回哨兵位前一个节点的位置

end

返回哨兵位节点的位置

empty

检测list是否为空,是返回true,否则返回false

size

返回list中有效节点的个数

front

返回list的第一个节点中值的引用

back

返回list的最后一个节点中值的引用

insert

在list的 position 迭代器指向的节点之前插入值为val的节点,返回新插入节点的迭代器

push_front

在链表的头部插入一个值为val的节点

pop_front

删除头部位置的节点

erase

删除position迭代器指向的节点,或删除从first到last迭代器区间的节点,返回下一个位置的迭代器

push_back

在链表的尾部插入值为val的节点

pop_back

删除最后一个节点

clear

删除所有有效节点

源代码思路

下面内容参考侯捷老师《STL源码剖析》

源代码中涉及空间配置器的部分不做重点讲解,只需知道空间配置器是为了给节点list申请空间的即可。

小编摘抄部分源码,带大家了解list设计的大概框架。具体实现的细节在模拟实现时讲解

节点设计

template <class T>
struct __list_node 
{
	typedef void* void_pointer;
	void_pointer* prev;
	void_pointer* next;
	T data;

}

struct在C语言中是结构体,在C++中是类。用struct封装不加访问限定符默认成员是公有的。迭代器和链表需要访问节点的数据,设计成共有是为了方便访问。设计成私有需要声明友元。

prevnext的指针是void*类型是因为不知道数据的类型,源码在实现其他接口时会把void*进行强转。和下面代码的设计是等价的

__list_node<T>* prev;   __list_node<T>* next;

data是用来储存数据的

迭代器的设计

template <class T, class Ref, class Ptr> 
struct __list_iterator  
{
	typedef __list_iterator<T, T&, T*> iterator;
	typedef __list_iterator<T, Ref, Ptr> self;

	typedef T value_type;

	typedef Ptr pointer;
	typedef Ref reference;

	typedef __list_node<T>* link_type;
	link_type node; //节点指针  核心数据

//运算符重载,为了让node能像普通指针一样

	//解引用重载
	reference operator*()const //Ref
	{
		return (*node).data;
	}
	//->运算符重载
	pointer operator->() const  //Ptr
	{
		return &(operator*());
	}
    //++运算符重载.....
 
	//--运算符重载....
	
	//==运算符重载....

	//......
}

成员全部共有,方便list访问

RefPtr两个模板参数是为了区分普通迭代器const迭代器,如下代码

typedef __list_iterator<T, T&, T*>  iterator;   //迭代器别名   
typedef __list_iterator<T, const T&, const T*>  const_iterator; //const迭代器别名

如下图

node是节点的指针,是核心数据。在迭代器这个类中,重载了*  ->  ++  --  ==  != 运算符是为了让结点指针能像普通指针一样,完成对链表的遍历和对数据的存取。这便是封装的魅力。

list的设计

template <class T, class Alloc = alloc>
class list
{
protected:
	typedef __list_node<T> list_node;

public:
	typedef list_node* link_type;

protected:
	link_type node;
}

上文已经提到,只需用一个节点指针node指向哨兵位节点,便可以通过迭代器对整条链表增删查改。

 begin()

iterator begin()
{
return (link_type)((*node).next);
}

获取哨兵位节点的下一个指针next,但next是void*类型的指针,需要强转成节点类型的指针

end()

iterator end()
{
return node;
}

获取尾节点的下一个节点的指针——哨兵位节点指针

空构造

void empty_initialize()
{

node = get_node(); //为哨兵位开空间

node->next = node; //没有有效节点,首尾指针都指向自己

node->prev = node;

}

list()//构造函数,构造空链表
{
empty_initialize();

}

list是允许构造空链表的

详解构造函数:http://t.csdnimg.cn/Iu0t4

insert()

iterator insert (iterator position, const T& x)
{

link_type tmp = create_node(x);

tmp->next = position.node;
tmp->prev =  position.node->prev;
(link_type(position.node->prev))->net = tmp;
position.node->prev = tmp;

return tmp;

}

上述代码中有经过封装的函数。但大致思路如下图

隐式类型转换:http://t.csdnimg.cn/jBT7I

push_back

void push_back(const T& x)
{
insert(end(), x);

}

复用insert


模拟实现

目的:源代码的变量经过了嵌套的typedef,函数经过层层封装。用源代码理解list的实现细节和运行机制并不容易。用源代码的的框架和实现思路实现一个简易的list,帮助我们更好的理解list。

模拟实现是用new和delete,管理list的内存。详见内存管理一文:http://t.csdnimg.cn/byO3P

节点设计

template <class T>
struct __list_node
{
	T* prev;//指向前一个节点
	T* next;//指向后一个节点
	T data;//储存数据

	__list_node(const T& val = T()) //构造函数
		:prev(nullptr)
		, next(nullptr)  //参数列表
		, data(val)
	{

	}
};

迭代器设计

template <class T, class Ref, class Ptr>  //封装指针
struct __list_iterator
{

	typedef __list_iterator<T, Ref, Ptr>  self;   //迭代器别名 

	typedef __list_node<T>  list_node; //节点别名别名  

	list_node* p_node;   //节点指针 

	__list_iterator(list_node* val)  
		:p_node(val)        
	{

	};     

	T operator*()//解引用重载
	{
		return  p_node->data;        
	}; 

	Ref operator*()//解引用重载 
	{
		return  p_node->data;
	};

	T operator->()
	{
		return &p_node->data;
	}
	Ptr operator->()     
	{
		return &p_node->data;
	}

	self& operator++()//加加运算符重载 
	{
		return p_node->next; 
	};

	bool operator!=(const self val)//不等于运算符重载
	{
		return p_node != val.p_node;
	};

	bool operator==(const self val)//等于运算符重载  
	{
		return p_node == val.p_node; 
	};
	
};

list设计

框架

template <class T>
class list
{
	typedef __list_node<T>  list_node; //节点指针别名
	typedef __list_iterator<T, T&, T*>  iterator;   //迭代器别名   
	typedef __list_iterator<T, const T&, const T*>  const_iterator;   //const迭代器别名    

	
public:


//接口......

private:
	list_node* head_node;//头节点,只要一个指针便可代表整个链表 


};

获取迭代器

iterator begin() 
{
	return head_node->next;
 }
const_iterator begin()
{
	return head_node->next;
}

iterator end()
{
	return head_node; 
}

const_iterator end()  
{
	return head_node;
}

空构造

void empty_init()
{
	head_node = new list_node;
	head_node->_prev = head_node;
	head_node->_next = head_node;
	
}
list()
{
	empty_init();
}

insert

iterator insert(iterator pos, const T& x)//指定位置插入
{
	list_node* cur = pos.p_node;  //用临时指针指向迭代器位置的节点
	list_node* prev = cur->prev; //用临时指针指向该节点的下一个节点

	list_node* newnode = new list_node(x); //构造新节点

	prev->next = newnode; //改变指向
	newnode->next = cur;

	cur->prev = newnode;
	newnode->prev = prev; 

	return newnode; //返回新节点的迭代器
}

代码思路如下图

erase

iterator erase(iterator pos)//指定位置删除
{
	assert(pos != end());  //不能删哨兵位

	list_node* cur = pos.p_node; //用临时指针指向前中后三个节点
	list_node* prev = cur->prev;
	list_node* next = cur->next;

	prev->next = next; //改变指向
	next->prev = prev;

	delete cur;//删除该节点

	return next; //返回下一个位置的节点的迭代器

}

赋值重载

现在写法

void swap(list<T>& lt)   
{
	std::swap(head_node, lt.head_node);   
}

list<T>& operator=(list<T> lt)  
{
	swap(lt);

	return *this;
}

其他接口

void push_back(const T& x)
{
	insert(end(), x); 
}

void push_front(const T& x)
{
	insert(begin(), x); 
}

void pop_back()
{
	erase(--end()); 
}

void pop_front()
{
	erase(begin()); 
}

本篇内容到此结束啦

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/593652.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【编程题-错题集】chika 和蜜柑(排序 / topK)

牛客对于题目链接&#xff1a;chika和蜜柑 (nowcoder.com) 一、分析题目 排序 &#xff1a;将每个橘⼦按照甜度由高到低排序&#xff0c;相同甜度的橘子按照酸度由低到高排序&#xff0c; 然后提取排序后的前 k 个橘子就好了。 二、代码 1、看题解之前AC的代码 #include <…

企业计算机服务器中了halo勒索病毒怎么处理,halo勒索病毒解密流程

随着网络技术的不断发展&#xff0c;网络在企业生产运营过程中发挥着重大作用&#xff0c;很多企业利用网络开展各项工作业务&#xff0c;网络也大大提高了企业的生产效率&#xff0c;但随之而来的网络数据安全问题成为众多企业关心的主要话题。近日&#xff0c;云天数据恢复中…

机械臂标准DH建模及正运动学分析(以IRB4600型工业机械臂为例)

1. 前言 对于工业机械臂而言&#xff0c;运动学是不考虑力学特性的情况下对机械臂的几何参数与其位置、速度、加速度等运动特性的关系研究。DH建模是运动学的基础&#xff0c;全称为Denavit-Hartenberg建模方法&#xff0c;是一种广泛应用于机器人运动学中的建模技术。该方法通…

Python爬虫:XPath解析爬取豆瓣电影Top250示例

一、示例的函数说明&#xff1a; 函数processing()&#xff1a;用于处理字符串中的空白字符&#xff0c;并拼接字符串。 主函数程序入口&#xff1a;每页显示25部影片&#xff0c;实现循环&#xff0c;共10页。通过format方法替换切换的页码的url地址。然后调用实现爬虫程序的…

Unity Animation--动画剪辑

Unity Animation--动画剪辑 动画剪辑 动画剪辑是Unity动画系统的核心元素之一。Unity支持从外部来源导入动画&#xff0c;并提供创建动画剪辑的能力使用“动画”窗口在编辑器中从头开始。 外部来源的动画 从外部来源导入的动画剪辑可能包括&#xff1a; 人形动画 运动捕捉…

[力扣]——387.字符串中的第一个唯一字符

. - 力扣&#xff08;LeetCode&#xff09; class Solution {public int firstUniqChar(String s) {int[] count new int[256];// 统计每个字符出现的次数for(int i 0; i < s.length(); i){count[s.charAt(i)];}// 找第一个只出现一次的字符for(int i 0; i < s.lengt…

几个容器网络问题实战解析

容器云平台和容器网络紧密结合&#xff0c;共同构建了容器化应用程序的网络基础设施&#xff0c;实现了容器之间的通信、隔离和安全性。文中容器云平台采用的容器网络组件是calico&#xff0c;这个是业界普遍采用的一种方案&#xff0c;性能及安全性在同类产品中都是比较好的。…

linux下载安装JDK

查看系统是否自带 jdk java -version 一、jdk下载安装 jdk11下载 上传到 linux 以下说明已下载 解压 tar -xzvf jdk-11.0.23_linux-x64_bin.tar.gz 查看是否安装成功 二、linux配置JDK环境 sudo vim /etc/profile JAVA_HOME/may2024/jdk-11.0.23 JRE_HOME$JAVA_HOME/…

苍穹外卖项目

Day01 收获 补习git Git学习之路-CSDN博客 nginx 作用&#xff1a;反向代理和负载均衡 swagger Swagger 与 Yapi Swagger&#xff1a; 可以自动的帮助开发人员生成接口文档&#xff0c;并对接口进行测试。 项目接口文档网址&#xff1a; ​​​​​​​http://localhost:808…

LLVM Instruction Selection 笔记

Instruction Selection 所处阶段 注&#xff1a;上图来源于 Welcome to the back-end: The LLVM machine representation 可以看到 SelectionDAG 架在 LLVM IR 和 LLVM MIR 之间&#xff0c;在此之前 machine independent optimization 已经完成。之后基本上就进入了 machine …

车载诊断技术 --- Service 22读取DID怎么会导致ECU不在线

车载诊断技术 — Service 22读取DID怎么会导致ECU不在线 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非…

Spring Cloud学习笔记(Hystrix):基本知识和代码示例

这是本人学习的总结&#xff0c;主要学习资料如下 - 马士兵教育 1、Hystrix简介2、Hystrix架构2.1、Hytrix的入口2.2、toObservable()流程 3、Hsytrix的简单样例3.1、dependency3.2、代码样例 1、Hystrix简介 Hytrix是用于处理处理延迟和容错的开源库&#xff0c;包含服务隔离…

指令和界面【Linux】

指令和界面 前言一、指令 vs 界面交互的需求满足需求的第一阶段——指令满足需求的第二阶段-界面时间 二、指令和界面交互区别为什么要学命令行总结 前言 Linux操作系统提供了丰富的命令行界面和图形用户界面工具&#xff0c;用户可以根据自己的需求选择适合的界面进行操作。命…

【Linux系统】冯•诺依曼体系结构与操作系统

本篇博客整理了操作系统相关的基础知识&#xff0c;先从硬件之冯•诺依曼体系结构&#xff0c;再结合软件之操作系统&#xff0c;旨在帮助读者理解计算机的软硬件资源&#xff0c;和操作系统的管理软硬件资源的手段。 目录 一、冯•诺依曼体系结构 1.计算机硬件设备 2.体系…

基于Springboot的校园生活服务平台(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的校园生活服务平台&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…

【Java】基本程序设计结构(一)

前言&#xff1a;现在&#xff0c;假定已经成功安装了JDK&#xff0c;并且能够运行上篇示例程序。本篇将开始介绍Java程序中的基本设计结构&#xff0c;其中包括&#xff1a;一个简单的Java应用&#xff0c;注释&#xff0c;数据类型&#xff0c;变量与常量&#xff0c;运算符&…

spring框架学习记录(3)

Spring事务 Spring事务简介 事务作用&#xff1a;在数据层保障一系列的数据库操作同成功同失败Spring事务作用&#xff1a;在数据层或业务层保障一系列的数据库操作同成功或同失败 Spring事务角色 事务管理员&#xff1a;发起事务方&#xff0c;在Spring中通常指代业务层开…

企业级数据治理学习总结

1. 水在前面 “数据治理”绝对是吹过的牛里面最高大上的题目了&#xff0c;本来想直接以《企业级数据治理》为题来水的&#xff0c;码字前又跑去图书馆借了几本书&#xff0c;翻了几页才发现自己连半桶水都提不起&#xff0c;撑死只能在小屁孩跟前吹吹牛。 好吧&#xff0c;实在…

Mysql如何通过ibd文件恢复数据

Mysql ibd文件恢复注意问题 创建数据库&#xff08;随意创建&#xff09;创建数据表&#xff08;备注&#xff1a;表结构要和要恢复的表结构一致&#xff0c;row_format要和ibd文件的row_format一致&#xff0c;否则&#xff0c;会提示两者不一致。 当前row_formatdynamic&…

刘强东创业成功的四大要素:团队、用户体验、成本与效率

摘要&#xff1a; 本文深入探讨了刘强东创业成功的四大关键要素&#xff1a;团队、用户体验、成本和效率。通过对这些要素的细致分析&#xff0c;我们旨在揭示刘强东如何运用这些策略将京东打造成一个全球知名的电商平台。 一、引言 刘强东作为京东集团的创始人和CEO&#xff…
最新文章